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Abstract. The problem of determination of momentum distributions of ejected electrons in slow atomic
collisions is studied within the impact-parameter method by using a dynamic adiabatic basis which takes
into account the correct boundary conditions. An expression is obtained which relates the momentum
distribution of the ejected electrons with a coherent sum of the delocalized dynamic adiabatic eigenstates
(elementary wavepackets). The form of the momentum distribution exactly coincides with the form of
the total wavepacket in configuration space. General formulas are applied to a model problem of electron
detachment in the process A− + A → A + A + e in which the electron-atom interactions are described
by the zero-range potentials. In the example considered, the momentum distribution of ejected electrons,
in the center-of-mass frame, exhibits a maximum located in the scattering plane on the circle of radius
| k |= (v/ρ)1/2 (in atomic units), where v is the relative collision velocity and ρ is the impact parameter.

PACS. 34.10.+x General theories and models of atomic and molecular collisions and interactions (including
statistical theories, transition state, stochastic and trajectory models, etc.)

1 Introduction

In the theory of slow atomic collisions one can expect that
the adiabatic electronic states of the quasimolecule formed
during the collision play an essential role in the description
of the collision dynamics. However, it is well known that
these states are not compatible with physical boundary
conditions. In the impact-parameter formulation of the
theory (i.e. when the motion of the nuclei is described
classically) it is necessary to append to molecular states
the “electron translation factors” [1–4] in order to obtain
a Galilean invariant theory.

An alternative approach is provided by the method
of nonstationary scaling of length [5,6]. In this method
the problem is reduced to the one in which the nuclei are
at rest but additional dynamic interactions appear in the
electronic Hamiltonian [7]. While the bound state adia-
batic dynamics and the corresponding processes of exci-
tation and charge exchange seem to be not strongly per-
turbed by these dynamic interactions [7–9], this may not
be the case for the electron continuum states and the pro-
cesses of ionization or detachment.

The theory of momentum distributions of the ejected
electrons within the conventional adiabatic approach has
been developed in reference [10]. This theory, however, not
incorporating the momentum transfer effects, cannot be
expected to correctly describe the region where the veloci-
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ties of the ejected electrons are smaller than or of the order
of magnitude of the relative collision velocity. The above-
mentioned method of nonstationary scaling of length has
been originally introduced in order to eliminate this defect
and has been successfully applied to some exactly solvable
models [5,11]. More recently, based on this method, an ab
initio treatment of the spectra of ejected electrons, in-
volving expansions in two-center Sturmian bases has been
developed [12,13]. Our goal in the present paper is to in-
troduce an approximate, adiabatic theory, valid for slow
collisions, which properly incorporates momentum trans-
fer effects and still provides a physically transparent pic-
ture of adiabatic mechanisms of the electron promotions
into the continuum.

The plan of the article is as follows. In Section 2 we
give the general formulation of the theory and derive basic
formulas for the momentum distributions of ejected elec-
trons. Some specific features of symmetric (homonuclear)
collisional systems are also discussed. In Section 3 the the-
ory is applied to a three-dimensional model describing the
detachment process: A + A− → A + A + e in which the
electron-atom interactions are simulated by the zero-range
potentials. Finally, Section 4 contains concluding remarks.

2 General theory

Let us consider a collisional system consisting of an elec-
tron and two centers of central forces traveling along the
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given classical trajectories. We label the centers T (tar-
get) and P (projectile) and assume the rectilinear tra-
jectories, although generalizations to curved trajectories
are straightforward. The electron wave function is a solu-
tion of the time-dependent Schrödinger equation (we use
atomic units throughout the work):[

−
1

2
∇2

r + VT (|r + αR(t)|) + VP (|r− βR(t)|)

]
×ψ(r, t) = i

∂

∂t
ψ(r, t) , (2.1)

where R(t) = RP (t) − RT (t) = (vt, ρ, 0) is the internu-
clear vector, v is the relative collision velocity, ρ is the
impact parameter and parameters α and β (α + β = 1)
define the position of the origin of the chosen reference
frame which is located on the internuclear axis ( RT (t) =
−αR(t),RP (t) = βR(t)). If initially (t → −∞) the elec-
tron is bound at the target in an atomic state defined
by the wave function φi(rT ) and energy Ei, then we are
looking for the solution of (2.1) satisfying the following
boundary condition:

lim
t→−∞

ψ(r, t) ∼ φi(rT )

× exp

[
i

(
vT · rT +

1

2
v2
T t−Eit

)]
, (2.2)

where rT = r−RT , vT = −αv is the velocity of the target
and the Galilean translational factor takes into account
the motion of the target in the chosen reference frame.

We introduce the nonstationary scaling of length by
dividing electron coordinates (x, y, z) by the internuclear
separation R(t) and simultaneously making the transfor-
mation to the rotating reference frame {q̂1, q̂2, q̂3} with the
unit vector of the q1-axis directed along the internuclear
axis (q̂1 = R̂(t)). The scaled coordinates are related to the
original ones by

q1 =
1

R(t)
[x cosϕ(t) + y sinϕ(t)] , (2.3)

q2 =
1

R(t)
[−x sinϕ(t) + y cosϕ(t)] , (2.4)

q3 =
z

R(t)
, (2.5)

where ϕ(t) = arctan(ρ/vt) is the polar angle of the R(t)
in the scattering plane. The electron wave function is rep-
resented in the form

ψ(r, t) = R−
3
2 (t) exp

[
i
r2

2R(t)

dR(t)

dt

]
f(q, τ) (2.6)

and a new time-like variable is introduced:

τ(t) =

∫ t

0

dt′

R2(t′)
= ω−1 arctan

(
vt

ρ

)
, (2.7)

with ω = ρv. The factor R−
3
2 (t) in (2.6) ensures the nor-

malization and the exponent is the generalized transla-
tional factor. The variation of the time in the interval

−∞ < t < +∞ corresponds to the variation of the param-
eter τ in the interval −π/(2ω) < τ < π/(2ω). Substitut-
ing (2.3-2.7) into (2.1) we obtain the modified Schrödinger
equation

H(τ)f(q, τ) = i
∂f(q, τ)

∂τ
, (2.8)

with

H(τ) = −
1

2
∇2

q +R2(τ)[VT (R(τ)|q + αq̂1|)

+VP (R(τ)|q− βq̂1|)] + ωL3 +
1

2
ω2q2 , (2.9)

where R(τ) = ρ/ cosωτ and

L3 = −i

(
q1

∂

∂q2
− q2

∂

∂q1

)
(2.10)

is the operator of the projection of the electron angular
momentum perpendicular to the scattering plane. In the
new (q, τ) “representation” the potential centers are at
“rest”, but as seen from (2.9) both the range and the
strength of the potentials are τ -dependent. The Hamil-
tonian H(τ) is an even function of τ and the parity
Π(q3 → −q3) is an exact symmetry.

The generalized translational factor has the important
property

lim
Rr−1

X →∞
exp

[
i
r2

2R(t)

dR(t)

dt

]
∼ exp

[
i

(
1

R(t)

dR(t)

dt
RX(t) · rX+

R2
X(t)

2R(t)

dR(t)

dt

)]
,(2.11)

where X = T, P . This is possible either when rX → 0 and
R is finite or when rX is finite and R →∞. In the latter
case, which corresponds to t→ ±∞, we further have

lim
t→±∞

exp

[
i

(
1

R(t)

dR(t)

dt
RX(t)·rX+

R2
X(t)

2R(t)

dR(t)

dt

)]
∼ exp

[
i

(
vX · rX +

1

2
v2
Xt

)]
, (2.12)

giving the complete Galilean translation factor. As a con-
sequence, the boundary condition associated with equa-
tion (2.8) and corresponding to (2.2) reads

lim
τ→τi+0

f(q, τ)

∼ R
3
2 (τ)eiπL3T φi(qTR(τ))e−iEi

∫
τ R2(τ ′)dτ ′ , (2.13)

with qT = q +αq̂1. The rotational operator is introduced
above due to the mutual orientation of the two reference
frames at t→ −∞ as defined by (2.3-2.5). Note that that
it does not affect, for example, spherically symmetric ini-
tial atomic states.

In slow collisions, in order to solve (2.8), it is natural to
expand f(q, τ) in terms of the adiabatic (instantaneous)
eigenfunctions of H(τ). Note that in general the spectrum
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of H(τ) is discrete (the exception is the case of head-on
collisions, ρ = 0, ω = 0). It is important to distinguish be-
tween the three subsets of these dynamic adiabatic eigen-
states, which we label by the index X = T, P,C:

f(q, τ)=
∑

X=T,P,C

∑
αX

aαX (τ)χαX (q, τ)e−i
∫
τεαX (τ ′)dτ ′, (2.14)

where

H(τ)χαX (q, τ) = εαX (τ)χαX (q, τ) . (2.15)

The three subsets differ in their behavior in the asymptotic
region defined by R→ +∞ (i.e. t→ ±∞, τ → τi,f ). The
first two subsets (X = T, P ) represent the states asymp-
totically localized in the vicinity of the potential centers
(qX → 0) and, in this limit, are given by [9]

lim
τ→τi,f

χαX (q, τ) ∼ R
3
2 (τ)φαX (qXR(τ)) , (2.16)

lim
τ→τi,f

εαX (τ) ∼ EαXR
2(τ) , (2.17)

where φαT,P (rT,P ) and EαT,P are separated-atom limits of
adiabatic quasimolecular states and energies correspond-
ing to bound states in isolated potentials VT,P (rT,P ).
When transformed back to (r, t) variables by means of
relations (2.6), (2.11) and (2.12), these states correspond
asymptotically to traveling atomic states. Note also that
εαT,P (τ)→ −∞ when R→ +∞.

The third subset (X = C) represents states with
εαC > 0, which are not localized in any particular region
of the configuration space and whose asymptotic behavior
for q → +∞ is mainly determined by the oscillator poten-
tial in (2.9). The particular form of these states and their
behavior when R → +∞ depend on the specific proper-
ties of the interaction potentials VT and VP . An example
will be given in the next section. When transformed back
to (r, t) variables by means of relation (2.6), these states
represent spreading wavepackets in the continuum and are
therefore of basic importance for the description of ioniza-
tion or detachment processes.

The unknown expansion amplitudes aαX (τ) in (2.14)
can be determined from the usual set of coupled equations:

daαX (τ)

dτ
= −

∑
X′=T,P,C

∑
α′
X′
6=αX

〈
χαX

∣∣∣∣ ∂∂τ
∣∣∣∣χα′X′

〉

×aα′
X′

(τ)e
−i
∫
τ

[
εα′
X′

(τ ′)−εαX (τ ′)

]
dτ ′

. (2.18)

The initial conditions associated with (2.18) should be in
accord with (2.13). If the initial atomic state belongs to
a degenerate subspace then in general we have several
of aαT (τi) 6= 0 . The simplest is the case when the ini-
tial state is non-degenerate spherically symmetric state,
so that it coincides with one of the separated-atom limits
of the quasimolecular states (i ≡ α0

T ):

aαX (τi) = δαX ,α0
T
. (2.19)

The information on various inelastic processes can be
extracted from the asymptotic values of the amplitudes
aαX (τf ). In order to do this, we first note that as a conse-
quence of (2.14) the wave function in (r, t) variables can
be written as a sum of three orthogonal terms:

ψ(r, t) =
∑

X=T,P,C

ψX(r, t). (2.20)

For X = T, P and t → +∞ we have from (2.11), (2.12)
and (2.16):

lim
t→+∞

ψX(r, t) ∼ eivX ·rX+ 1
2 v

2
Xt

×
∑
αX

aαX (τf )φαX (rX)e−i
∫
t εαX (t′)R−2(t′)dt′ . (2.21)

These wave functions describe superpositions of electron
bound states traveling with the potential centers. The
probabilities for the excitation and charge exchange are
given by

Pexc(ρ, v) =
∑

αT 6=α0
T

|aαT (τf )|2 , (2.22)

Pcex(ρ, v) =
∑
αP

|aαP (τf )|2 . (2.23)

The corresponding cross-sections can be obtained by inte-
grating over the impact parameters.

The electrons ejected into the continuum are described
by the wave function

ψC(r, t) = R−
3
2 (t)ei

r2

2R(t)
dR(t)

dt

×
∑
αC

aαC (τ)χαC (q, τ)e−i
∫
τ εαC (τ ′)dτ ′ . (2.24)

The quantity of interest is the momentum distribution of
the ejected electrons:

W (k) =∣∣∣∣∣ lim
t→+∞

(2π)−
3
2

∫
e−ik·r+i 1

2k
2tψC(r, t)d3r

∣∣∣∣∣
2

. (2.25)

The integral can be evaluated by the saddle-point method
(see Appendix A), giving our main result:

W (k) =

v−3

∣∣∣∣∣∑
αC

aαC (τf )χαC

(
k

v
, τf

)
e−i

∫ τf εαC (τ)dτ

∣∣∣∣∣
2

. (2.26)

The above expression indicates that the form of the mo-
mentum distribution of the ejected electrons is determined
by the coherent superposition of those dynamic adiabatic
eigenstates χαC (k/v, τf ) which are populated during the
collision. Comparing sums in (2.24) and (2.26), one can
see that both expressions are the same function referred
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to different (configuration and momentum) spaces. This
is due to an interesting property of the wave function of
ejected electron. Namely its invariance (up to a universal
phase factor — the generalized translational factor) with
respect to Fourier transform which connects the configura-
tion and momentum representations. The total probability
for the break-up process (ionization or detachment) is

Pion(ρ, v) =

∫
W (k)d3k =

∑
αC

|aαC (τf )|2 , (2.27)

which directly follows from (2.26) due to the orthonormal-
ization of the adiabatic eigenfunctions.

We conclude this section by discussing some specific
modifications which are necessary in the case of symmet-
ric (homonuclear) collision systems. In our formulation
these systems are defined by the condition: VT (r) = VP (r).
The common origin of both rotating and non-rotating ref-
erence frames is taken at the midpoint of the internu-
clear axis (α = β = 1/2). The dynamic adiabatic eigen-
states can now be divided into two groups of symmetric
or even-parity (g) and antisymmetric or odd-parity (u)
states with respect to the transformation: q→ −q. In ad-
dition, the index X used above to distinguish between the
localized and delocalized states takes now only two values:
X = B,C. This is because the asymptotically bound adi-
abatic eigenstates are in this case localized simultaneously
around both centers. Instead of the expansion (2.14) we
now have

f(q, τ) =∑
s=g,u

∑
X=B,C

∑
αX

asαX (τ)χsαX (q, τ)e
−i
∫ τ
τi
εsαX

(τ ′)dτ ′
.(2.28)

The first group of states (X = B) represents now asymp-
totically the symmetric and antisymmetric combinations
of atomic states:

lim
τ→τi,f

χg,uαB (q, τ) ∼

R
3
2 (τ)2−

1
2 [φαB (qTR(τ))± φαB (−qPR(τ))] , (2.29)

lim
τ→τi,f

εg,uαB (τ) ∼ EαBR
2(τ) . (2.30)

The coupled equations for g and u amplitudes ag,uαX (τ)
decouple and can be solved independently. The initial
conditions are again particularly simple in the case of a
spherically symmetric non-degenerate initial atomic state
φα0

B
(rT ) on the target T :

ag,uαX (τi) = 2−
1
2 δαX ,α0

B
. (2.31)

The probabilities for the excitation and charge exchange
are now given by

Pexc(ρ, v) =
1

2

∑
αB 6=α0

B

∣∣∣agαB (τf )e−i
∫ τf
τi

εgαB
(τ ′)dτ ′

+ auαB (τf )e−i
∫ τf
τi

εuαB
(τ ′)dτ ′

∣∣∣2 , (2.32)

Pcex(ρ, v) =
1

2

∑
αB

∣∣∣agαB (τf )e−i
∫ τf
τi

εgαB
(τ ′)dτ ′

− auαB (τf )e−i
∫ τf
τi

εuαB
(τ ′)dτ ′

∣∣∣2 . (2.33)

The probability distribution of the ejected electrons is

W (k) = v−3

∣∣∣∣∣ ∑
s=g,u

∑
αC

asαC (τf )χsαC

(
k

v
, τf

)

×e−i
∫ τf
τi

εsαC
(τ)dτ

∣∣∣∣∣
2

, (2.34)

and the total ionization or detachment probability is

Pion(ρ, v) =
∑
αC

(|agαC (τf )|2 + |auαC (τf )|2) . (2.35)

3 Model problem with zero-range potentials

The general theory presented in the previous section is ap-
plied here to a model problem describing the detachment
of an electron from a negative ion colliding with its own
atom:

A + A− → A + A + e . (3.1)

The interaction of the active electron with each of the
atoms is described by the zero-range potential [14]:

VX =
2π

γ
δ(rX)

∂

∂rX
rX , (3.2)

where X = T, P and rT,P = r± 1
2R(t). Parameter γ > 0

defines the energy EB = −γ2/2 of a single bound state
supported by an isolated zero-range potential. The corre-
sponding eigenfunction is

φB(rX) =
( γ

2π

) 1
2 e−γrX

rX
. (3.3)

Alternatively, instead of dealing with the operators (3.2)
the existence of the zero-range potentials is equivalent to
imposing additional boundary conditions onto the electron
wave function [14]:

lim
rX→0

ψ(r, t) ∼ c(t)

(
1

rX
− γ + ivX · r̂X

)
. (3.4)
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Fig. 1. Adiabatic eigenvalues (potential energy curves) of sym-
metric (g) and antisymmetric (u) states of an electron in the
field of two identical zero-range potentials as functions of in-
ternuclear distance R.

The usual Born-Oppenheimer adiabatic potential en-
ergy curves of this collisional system can be found as so-
lutions of the transcendental equation [14]:

(−2E)
1
2 ∓

1

R
exp

[
−(−2E)

1
2R
]

= γ . (3.5)

The dependence of the potential energy curves corre-
sponding to symmetric (g) and antisymmetric (u) states
on the internuclear separation R is shown in Figure 1.
The initial electron wave function in the process (3.1) is
a symmetric combination of g- and u- asymptotic adia-
batic states, and these components evolve independently
in time. From Figure 1 it can be seen that the crossing
of the continuum border of the u-curve at R = 1/γ is re-
sponsible for the promotion of the electron into continuum
leading to the detachment process. The g-curve stays all
the time far from the continuum and this component is
not expected to contribute to the detachment. Note, how-
ever, that the model is pathological in the united atom
limit R→ 0, because there is a non-physical divergence of
the g-curve which behaves like ∼ −const/R2.

Although the above adiabatic picture is physically
transparent, as mentioned in the Introduction, the Born-
Oppenheimer states do not take into account the motion
of the centers, and one has to resort to dynamic adia-
batic states, that is to the solutions of (2.15). For this
system, dynamic adiabatic eigenfunctions can be found in
the closed form (see Appendix B):

χg,u(q, τ) = N

[
e
i
2ωq2

1

qT
U

(
−
ε(τ)

ω
, (2ω)

1
2 qT

)
± e−

i
2ωq2

1

qP
U

(
−
ε(τ)

ω
, (2ω)

1
2 qP

)]
,(3.6)

where qT,P = |q ± 1
2 q̂1|, N is a normalization constant

and U(a, x) ≡ D−a− 1
2
(x) is the parabolic-cylinder func-

tion [15]. The dynamic adiabatic eigenvalues ε(τ) are all

Fig. 2. Dynamic adiabatic eigenvalues of symmetric states as
functions of time-like parameter τ .

Fig. 3. Same as Figure 2 but for antisymmetric states.

possible solutions of the equation

(2ω)
1
2U ′

(
−
ε

ω
, 0
)
± U

(
−
ε

ω
, (2ω)

1
2

)
=

−γR(τ)U
(
−
ε

ω
, 0
)
, (3.7)

where prime indicates the derivative with respect to the
second argument and R(τ) = ρ/ cosωτ . In all numerical
calculations we have used rapidly convergent power series
expansions of U(a, x) [15].

Two examples of dynamic adiabatic eigenvalues as
functions of the parameter τ are shown in Figure 2 (sym-
metric states) and Figure 3 (antisymmetric states) for the
set of parameters: γ = 1 a.u., ρ = 0.5 a.u. and v = 0.2 a.u.
Before we proceed further, we note that, as has already
been indicated in figure 1, our problem possesses an exact
scaling property. This means that once we have certain
results for γ = 1 a.u., the results for an arbitrary γ can be
obtained by scaling all lengths by γ−1, all momenta by γ,
energies by γ−2 and so on.

As can be seen from Figures 2 and 3 in each of these
cases there is only one asymptotically bound state, which
we, following the notation of the preceding section (X =
B) simply call B-type state and label as αB = B. These
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states for τ → τi,f (that is R(τ)→ +∞) are characterized
by εg,uB (τ) → −∞. Therefore, in this limit, in both (3.6)
and (3.7) we can use the asymptotic formula [15]:

U(a, x) ∼ U(a, 0) exp
[
−a

1
2x+O(a−

1
2 )
]
, (3.8)

valid for a� x2, as well as the exact expressions [15]:

U(a, 0) =
(π)

1
2

2
a
2 + 1

4Γ
(

3
4 + a

2

) ,
U ′(a, 0) = −

(π)
1
2

2
a
2−

1
4Γ
(

1
4 + a

2

) , (3.9)

in order to obtain

lim
τ→τi,f

χg,uB (q, τ)∼N ′
[
e−(−2ε)

1
2 qT

qT
±
e−(−2ε)

1
2 qP

qP

]
, (3.10)

(−2ε)
1
2 ∓ e−(−2ε)

1
2 = γR(τ) . (3.11)

Note that if we introduce E = εR−2, then (3.11) trans-
forms exactly into (3.5), giving the relationship between
the usual and dynamic adiabatic eigenvalues in the asymp-
totic region. If we neglect the exponentially small splitting
between the g- and u-eigenvalues, then from (3.11) we find

lim
τ→τi,f

εg,uB (τ) ∼ −
γ2

2
R2(τ) , (3.12)

which is in accord with (2.30). Substituting (3.12) into
(3.10) and taking into account (3.3) we see that (2.29) is
also fulfilled.

We now turn to the remaining set (X = C, C-type
states) of the dynamic eigevalues shown in Figures 2 and 3
and labeled by αC ≡ n = 0, 1, 2, . . . . All these eigenvalues
have the property

εg,un (τi,f ) = ω

(
2n+

3

2

)
. (3.13)

This result directly follows from (3.7) and (3.9), because
the poles of the function R(ε) coincide with the poles of
the gamma-function Γ (3

4 −
ε

2ω ), that is with (3.13). Sub-
stituting (3.13) in (3.6) we find the asymptotic expression
of the C-type dynamic adiabatic eigenstates:

χg,un (q, τi,f ) = Nn

[
e−

ω
2 (q2T−iq2)L

1
2
n (ωq2

T ) ±

±e−
ω
2 (q2P+iq2)L

1
2
n (ωq2

P )
]
, (3.14)

where Lαn(x) are generalized Laguerre polinomials [15].
In the case of the symmetric states, as can be seen from

Figure 2, the B-type state is well separated from C-type
states, the latter being only slightly perturbed from their
asymptotic values (3.13). Therefore, the transitions from a
symmetric component of an initial bound state to C-type
states, which lead to detachment, can be neglected. This

is in accord with the above given discussion in connection
with Figure 1.

On the contrary, as seen from Figure 3, antisymmetric
B-type state is strongly coupled to a few C-type states,
exhibiting the characteristic avoided crossings of eigenval-
ues. This is also in accord with the discussion related to
Figure 1, where it was predicted that it is the antisymmet-
ric component of the wave function which is responsible
for the detachment process.

In order to find transition amplitudes, one has to solve
the corresponding system of coupled equations with ini-
tial conditions (2.31) with α0

T ≡ B. Alternatively, we shall
adopt an approximate adiabatic method based on the exis-
tence of “hidden crossings” [7] which is asymptotically ex-
act in the limit v → 0. This method relies on the fact that
the adiabatic eigenvalues, such as those of antisymmet-
ric states shown in Figure 3, represent various branches
of a single multivalued analytic function εu(τ) which is
in our case implicitly defined by equation (3.7). Various
branches can be analytically continued from the real τ -
axis into complex τ -plane. The positions of branch points
(points of exact degeneracy of the pairs of complex eigen-
values) are essential for determination of the transition
amplitudes between the adiabatic eigenstates [7,16].

In our case we first determine, using equation (3.7), the
branch points of the multivalued analytic function εu(R)
in the complex R-plane, and then we use the analytic con-
tinuation of the relation (2.7)

τ =
i

2ω
ln

i+

[(
R
ρ

)2

− 1

] 1
2

i−

[(
R
ρ

)2

− 1

] 1
2

, (3.15)

to calculate the branch points in the complex τ -plane. In
actual calculations we use the fact that in the vicinity of
the branch point R = Rc we have εu(R) = εuc + C(R −
Rc)

1
2 . Therefore, we can find branch points by searching

for the points, where dR/dεu = 0 and the function R(εu)
is explicitly given by (3.7). For parabolic-cylinder func-
tions U(a, x) and its derivatives, analytic continuations of
the power-series expansions [15] have been used.

Figure 4 shows the branch points in the first quadrant
of the complex τ -plane for the three cases defined by the
parameters γ = 1 a.u., v = 0.2 a.u. and ρ = 0.2, 0.5
and 0.8 a.u. The branch points are labeled by the indices
of the adiabatic states which are pairwise degenerate at
these points. Due to the symmetry of the problem, branch
points in other three quadrants of the complex τ -plane
can be obtained as mirror images with respect to real and
imaginary τ -axes. The most important for the collision
dynamics are branch points which are closest to the real
τ -axis. Thus the avoided crossing between the B-state and
n = 0 state, visible in Figure 3, is the consequence of the
proximity to the real τ -axis of the branch point (B, 0)
shown in Figure 4 in the ρ = 0.5 a.u. case. It can also be
seen from Figure 4 that as the collisional impact parame-
ter decreases the number of dynamic adiabatic eigenstates
which are strongly coupled increases.
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Fig. 4. Branch points of analytic continuations of antisym-
metric dynamic adiabatic eigenvalue into complex τ -plane.

In what follows, we shall concentrate on the collisions
with ρ = 0.8 a.u., where, as indicated from Figure 4, we
can assume that only the coupling between the B and
n = 0 states is important, whereas all other couplings can
be neglected. Therefore, we are dealing with a two-state
problem and the transition probability for populating the
n = 0 antisymmetric state is [16]

|au0 (τf )|2 = 2e−2|B|(1− e−2|B|) sin2A , (3.16)

where A andB are real and imaginary parts of the integral∫
C

εu(τ)dτ = A+ iB , (3.17)

and contour C is shown in Figure 4. The probability (3.16)
is one half the usual expression for the two-state prob-
lem [16], because of the initial condition (2.31). The in-
tegral in (3.17) can be calculated by applying integration
by parts: ∫

C

εu(τ)dτ = −

∫
C′
τ(εu)dεu , (3.18)

where C′ is a contour (a semi-circle, for example) connect-
ing the points εuB(τ = 0) and εu0 (τ = 0) in the complex
εu-plane. The function τ(εu) is explicitly given by (3.15)
and (3.7). Numerical calculations give: |au0 (τf )|2 = 0.064.

We are now ready to calculate the momentum distri-
bution, in the center-of-mass frame, of the detached elec-
trons. According to (2.34), in our case we simply have

W (k) =
1

v3
|au0 (τf )|2

∣∣∣∣χu0 (k

v
, τf

)∣∣∣∣2 . (3.19)

Using the explicit expression (3.14) we first find the nor-
malization constant

N0 =
(ω
π

) 3
4 [

2
(
1− e−

ω
2

)]− 1
2 , (3.20)

Fig. 5. Momentum distribution, in the center-of-mass frame,
of the electrons ejected in the scattering plane (k3 = 0).

and then from (3.19):

W (k) = |au0 (τf )|2
( ρ

πv

) 3
2

×
cosh(ρk1)− cos(ρk2)

2 sinh
(
ρv
4

) exp

(
−
ρk2

v

)
.(3.21)

As one can see from the above expression, in this case
the form of the distribution does not depend on parameter
γ (i.e. on electron-atom interaction) but has its origin in
kinematics related to the selected trajectory of heavy par-
ticles. The electron-atom interaction determines the abso-
lute value of the distribution through the probability of
non-adiabatic transition (3.16).

Figure 5 shows the momentum distribution of the
electrons ejected in the scattering plane (k3 = 0).
Only the k2 > 0 region is shown in order to clearly
make visible the minimum at the origin. The distribu-
tion is, of course, symmetric with respect to the k1-axis,
W (k1,−k2, 0) = W (k1, k2, 0). Almost cylindrical symme-
try of the distribution is the consequence of the dumping
effect of the exponent in (3.21). This dumping restricts
the arguments of the cosh- and cos-function to the regions
where these functions can be represented by the first two
terms in their Taylor-series expansions:

W (k) ≈ |au0 (τf )|2
( ρ

πv

) 3
2 ρ2(k2

1 + k2
2)

4 sinh
(
ρv
4

)
× exp

(
−
ρk2

v

)
. (3.22)

From the last expression it follows that the maximum
which appears in Figure 5 is located on the circle of radius
|k| = (v/ρ)

1
2 .
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Fig. 6. Same as Figure 5, but in the plane perpendicular to
the impact velocity (k1 = 0).

Fig. 7. Same as Figure 5, but in the plane perpendicular to
the direction of the impact parameter (k2 = 0).

Figures 6 and 7 show momentum distributions of the
electrons ejected, respectively, in the plane perpendicular
to the impact velocity (k1 = 0) and in the plane perpen-
dicular to the direction of the impact parameter (k2 = 0).
They appear almost indistinguishable due to the relation
(3.22). The structures, such as the maxima in Figures 5, 6
and 7 and the minimum in Figure 5 are all consequences of
the symmetry properties of the dynamic eigenstate which
directly determine the momentum distribution via rela-
tion (3.19).

We have considered here the simplest situation when
only the lowest C-type dynamic eigenstate is populated
during the collision. As discussed above, in collisions with
smaller impact parameters more states will be populated
(although with successively decreasing probabilities) and,
as can be seen from (2.34), one can expect complicated
interference effects in the momentum distributions of the
ejected electrons. We note also that the limit of head-on

collisions (ρ→ 0, ω → 0) needs the special treatment, and
that exact expressions for the momentum distributions of
the ejected electrons exist in this case [5,11].

4 Concluding remarks

In order to fulfill the physical boundary conditions in the
description of the slow atomic collisions, one is naturally
led to the introduction of the new space and time-like vari-
ables and the notion of the dynamic adiabatic eigenstates.
Basically, these eigenstates can be divided into two classes:
the first one represents the states asymptotically localized
in the vicinity of either of the centers of force and the
second one represents the delocalized states. In physical
space-time variables the first class corresponds to states
which asymptotically represent the bound atomic states
traveling with either of the force centers. The second class
represents ever-spreading wavepackets and are related to
the unbound motion of the electron.

The most important result of the present work is
the expression (2.26) which relates the momentum dis-
tribution of the ejected electrons with a coherent sum of
the delocalized dynamic adiabatic eigenstates (elementary
wavepackets). The ionization or detachment process, in
adiabatically slow collisions, proceeds via the population
of these dynamic adiabatic eigenstates and the form of
momentum distribution exactly coincides with the form of
the total wavepacket in configuration space.

In the present application we have treated the model
problem of electron detachment described by the zero-
range potentials. Further developments will be directed
towards the treatments of more realistic systems and
interactions involving short-range as well as long-range
(Coulomb) interactions.

Finally, we comment on the relationship between the
present approximate theory and ab initio approach de-
veloped in references [12,13]. The latter also employs the
non-stationary scaling of length in order to ensure the cor-
rect boundary conditions. However, while in our method
the resulting Schrödinger equation in {q, τ} variables is
solved approximately by using expansions in terms of dy-
namic adiabatic eigenstates, in references [12,13] a method
is developed for constructing the exact solutions. First,
the Fourier transformation from τ to frequency domain is
performed. The solution of the resulting equation is then
expanded in terms of the Sturmian two-center functions
which form a complete discrete basis. An increasing num-
ber of coupled equations for the expansion coefficients is
solved numerically untill the desired convergence is ob-
tained. This method should give “exact” results (within
the impact-parameter approximation) regardless of the
magnitude of the relative collision velocity. The published
applications [12,13] are related to electron momentum dis-
tributions in head-on, proton-hydrogen collisions. It will
certainly be interesting to compare in the future the pre-
dictions of both methods in the region of slow collisions.
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Appendix A

According to (2.25) and (2.24) the momentum distribution
of the ejected electrons is given by

W (k) =∣∣∣∣∣ lim
t→+∞

∑
αC

I(k, t)ei
1
2k

2taαC (τf )e−i
∫ τf εαC (τ)dτ

∣∣∣∣∣
2

, (A.1)

where

I(k, t) = (2πvt)−
3
2

∫
e−ik·r+i r

2

2t χαC

( r

vt
, τf

)
d3r (A.2)

and we have used that for t → +∞, R(t) → vt. Intro-

ducing the new integration variable r = t
1
2 s, the above

integral takes the form

I(k, t) = (2πv)−
3
2

×

∫
e−it

1
2 k·s+i s

2

2 χαC

(
s

vt
1
2

, τf

)
d3s . (A.3)

The above integral can be calculated by the saddle-point
method. The position of the three-dimensional saddle-
point is s0 = t

1
2 k. Note that the χαC does not affect the

position of the saddle-point even if it contains an expo-
nential factor due to the t−

1
2 -dependence of its argument.

We therefore arrive at the result

I(k, t) = (iv)−
3
2 e−i

k2t
2 χαC

(
k

v
, τf

)
. (A.4)

Substituting this back into (A.1) gives the expression
(2.26).

Appendix B

We first note a general transformation property of the
solutions of equation (2.15) with the translation of the
origin of the reference frame along the q1-axis. Namely, the
relationship between the solution χ(q, τ) with the origin
at (0, 0, 0) and the solution χ′(q′, τ) with the origin at
(α, 0, 0) is the following:

χ(q, τ) = e−iαωq2χ′(q− αq̂1, τ) . (B.1)

This property can be checked by direct substitution
of (B.1) in (2.15).

For the problem with two zero-range potentials the dy-
namic adiabatic eigenstates are solutions of the equation(
−

1

2
∇2

q + ωL3 +
1

2
ω2q2

)
χ(q, τ) = ε(τ)χ(q, τ) , (B.2)

which satisfy the boundary conditions:

lim
qX→0

χ(q, τ) ∼ const

[
1

qX
− γR(τ)±

i

2
ω
q2

qX

]
,

X = T, P (B.3)

with qT,P = q ± 1
2 q̂1. This conditions follow from (2.11)

and (3.4).
Taking into account (B.1) we look for the symmet-

ric and antisymmetric solutions of (B.2) and (B.3) in the
form:

χg,u(q, τ) = N

[
e
i
2ωq2

U(qT )

qT
± e−

i
2ωq2

U(qP )

qP

]
, (B.4)

where U(qX) is the solution of the equation(
−

1

2

d2

dq2
X

+
ω2

2
q2
X − ε

)
U(qX) = 0 , (B.5)

satisfying the boundary conditions

lim
qX→0

U(qX) ∼ c0 + c1qX , lim
qX→∞

U(qX) = 0 . (B.6)

The conditions (B.5) and (B.6) are uniquely satisfied by
the parabolic-cylinder functions [15]:

U(qX) = U
(
−
ε

ω
, (2ω)

1
2 qX

)
. (B.7)

Substitution of (B.7) in (B.4) gives the expression (3.6)
in the text, while the substitution of (B.4) in (B.3) repro-
duces the spectrum-determining equation (3.7).

We note that the spectrum of the unperturbed Hamil-
tonian in (B.2), that is without the boundary conditions
(B.3), consists of series of discrete but infinitely-fold de-
generate eigenvalues [9]:

εN = ω

(
N +

3

2

)
, N = 0, 1, 2, . . . (B.8)

With the introduction of the zero-range potentials, that is
the boundary conditions (B.3), only one perturbed state
per degenerate manifold with even N (of each g- and u-
symmetry) emerges, as is seen from equation (3.13) in the
text. The remaining states are not affected by the zero-
range potentials and do not take part in the collision dy-
namics. The unperturbed manifolds with odd N are com-
pletely unaffected by the zero-range potentials because
these states have odd parity Π(q3 → −q3) = (−1)N [9]
and are therefore exactly zero at the locations of the zero-
range potentials.
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